the pressure dependence of T_c requires knowledge of the pressure dependencies of T_F , $N(\varepsilon_F)$, and I. In the following discussion we shall make some assumptions as to the nature of I and $N(\varepsilon_F)$.

Let us assume that the FM behavior can be described by the Hubbard model 16 for a single, nondegenerate, d-band orbital, such as discussed by Evenson et al., 17 where the bare intra-atomic exchange constant is replaced by an effective intra-atomic exchange which takes into account the individual electron correlations. In general we assume that I is a compositionally averaged constant in the case of the FM behavior of alloys. For the $\text{MnAs}_{x}\text{Sb}_{1-x}$ solid solutions considered in this paper, I is the effective exchange appropriate for the Mn atoms. Using double time Green's function techniques and decoupling in first order, the exchange splitting is the assumed nI_{ζ} . We assume that I can be found by means of a perturbation treatment such as used by Lang and Ehrenreich or by Kanamori, 19 and we write I as given approximately by 12,13,15,19

$$I = I_b \left(1 + \gamma I_b / W\right)^{-1} \qquad , \tag{6}$$

where I_b is the bare interaction, W is the bandwidth and γ is a constant. In addition we assume that the number of magnetic electrons n remains constant, consequently $N(\varepsilon_F)$ can be written as 12,13

$$N(\varepsilon_{F}) = \beta/W \qquad , \tag{7}$$

where β is another constant and is related to γ . It is implied that W and thus $N(\varepsilon_F)$ scale uniformly (uniform scaling assumption) under volume changes. Finally, we assume the volume dependence of W is given by Heine's 21 results

$$\partial \ln W/\partial \ln V = -5/3$$
 (8)

Using the above results, Eqs. (6)-(8), the volume dependence of \overline{I} , Eq. (4), is

$$\frac{\partial \ln \overline{I}}{\partial \ln V} = \left[\frac{5}{3} + \frac{\partial \ln I_b}{\partial \ln V} \right] \frac{\underline{I}}{I_b} , \qquad (9)$$

which is independent of 8 and γ and where here I_b is assumed volume dependent. For the density of states of the form given by Eq. (7), it can be shown that $T_F \sim W$, and hence from Eq. (8), $\partial \ln T_F / \partial \ln V = -5/3$. Using Eqs. (3), (4), (8) and (9) the volume dependence of T_c becomes

$$\frac{1}{2} \ln T_{\rm c} = 1$$

$$= -\frac{5}{3} + \frac{1}{2} \left[\frac{5}{3} + \partial \ln I_b / \partial \ln V \right] \left[\overline{I} - 1 \right]^{-1} (I/I_b) , \qquad (10)$$

or equivalently using Eq. (3)

$$\Gamma = -\frac{5}{3} + \frac{1}{2} \left[\frac{5}{3} + \partial \ln I_b / \partial \ln V \right] (I/\overline{I}I_b) (T_F^2/T_c^2) . \tag{11}$$

In terms of pressure, Eq. (11) can be written as

$$\partial T_{c}/\partial P = \frac{5}{3} \pi T_{c} + \frac{1}{2} \pi \left[\frac{5}{3} + \partial \ln I_{b}/\partial \ln V \right] \left(I/\overline{I} I_{b} \right) \left(T_{F}^{2}/T_{c} \right) , \qquad (12)$$

where n is the volume compressibility.

We shall now show how pressure measurements of $T_{\rm c}$ can be used to determine a maximum value for \overline{T} and a minimum value for $T_{\rm F}$. We can rewrite Eq. (10) as

$$\overline{I} - 1 = \frac{1}{2} \left[\frac{5}{3} + \partial \ln I_b / \partial \ln V \right] (I/I_b) \left[\Gamma + \frac{5}{3} \right]^{-1} \qquad (13)$$